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Motivation

> Suppose that f vanishes outside [T, T]:
T .
Fw) = / F(t)e= it
~T

> Suppose that f results from lowpass filtering:

C

) = = / F(w)e™ du

:% »

Which f € L?(—o0,00) loses the smallest
fraction of energy, that is, which f maximizes
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> To ask the question differently: what

?

time-limited function f minimizes
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(supergain)



Band-limited functions that are also
time-limited?



Structure of the Talk

Introduction of Band-limited Functions

Prolate Spheroidal Wave Functions, History,
Subject of Our Work

Classical Theory in Modern Language

Numerical Algorithms: Quadratures,
Interpolation

Formulae for Certain Special Values

An Application



Introduction: Band-Limited Functions

> Band-limited functions

> Fourier transform with compact support

> Examples: sin(m -t), sin(t) + cos(3.1t),
Iy + Iz + 21 - I cos(¢2 — ¢1)

> Ubiquitous: wave phenomena, measurements,

engineering problems

> Importance was recognized 150 years ago,

Fourier analysis



Fourier Methods, Gibbs Phenomenon

> Reconstruction of Discrete Fourier Transform
for f(x) =« on [—1,1].

reconstructed function
1.5 |

> Jump discontinuity at the ends of the interval

> Fourier methods work well when functions
have “smooth” periodic extensions on the

entire real line



Prolate Spheroidal Wave Functions

Band-limited and “time-concentrated”

Initially known as solution to the second

order ordinary differential equation
(1 —2*) ' (2)) + (x — Z2®) ¢(x) = 0
Studied as special functions in mathematical

physics (around 1850)

Various evaluation schemes: expansions based
on polynomials, Bessel functions, Weber

functions, etc. (1880 - 1940)

Classical evaluation scheme, three-term
recursion, Bouwkamp (1942)

Unstable for large-scaled problems



Prolate Spheroidal Wave Functions

(continued)

Differential operator

L(y) = ((1 — 2*) ¢'(2))" — ¢’z ¢ ()

and integral operator

Q) = /_ RIOESE”

commute!

Analytical properties, applications in
electrical engineering by Slepian and
colleagues at Bell Laboratories (1960s)

Sequences of famous papers; not used as a

numerical tool

Applications in antenna design by Rhodes
(1974)

Limited by the availability of PSWFs



Mathematical Properties

Sturm-Liouville Eigenvalue Problem

(1 —2) ¢ (2)) = 2 Pu (@) + Xn Yn(z) =0

> For each ¢ > 0, eigenvalues X!, are positive,
can be ordered in increasing order; ;. is the

corresponding n-th order eigenfunction

> {4¢} form a basis for L?[—1,1] functions,

with weight function 1
> 1)y 1s real-valued
> )5, are even, and 5, | are odd
> ¢ has n real and simple roots on |-1, 1]

> Scaling, orthonormal basis for L*[—1, 1]

1
/_ R V(D) dt =



Mathematical Properties (continued)

> Eigenfunctions

= W) e ) dt = X -y ()

4 7(t—x)

> (surprise!) Orthogonal on R!

/wn (1) dt = O

> (obviously?) {%¢} form a basis for functions
of band-limit ¢ on R?

> Analytic on C, a rich collection of identities
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Examples of PSWFs

Prolate Functions #0 - #3 and #4 - #7 (¢ = 30)
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Prolate Functions #30, even and odd PSWF's
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“Supergain”

/ sz(x»? da Ai
or

|2 Wn(@)? dz 1
[ Wg(@)? de A
> Behavior of XS, 2¢(~ 127)

A, vs. n for ¢ = 200:
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> Qualitative discussion of the implied behavior
of ¢ on R*
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Classical Theory: Connection to Legendre

Polynomials

> Legendre Polynomials satisfy
(1 =2®) Py(2)) +n(n+1) Py(z) =0

> Three-term Recursion

2 1
nY x P,(x) — o
n+1 n-+1

> Prolate functions satisfy

(1= 22) ¥ (@) + (xn — ¢ 22) hu(x) = 0

> Expanding Prolate functions in Legendre

Poyi(z) = P,_1(x)

Series

Vm(T) = Z an’ + Pr(z)

> Three-term recursion

m m m —
Ap - Olpyg +bp -0 +Cp-apy 5 =0,
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with
(n+2)(n+1) 5

a/n — .C

(2n +3)4/(2n +5)(2n + 1)

2n(n+1) — 1 2
2n+3)(2n—1) ° X

b, = n(n+1)+

n(n —1) 2

Cn == - C

(2n —1)y/(2n — 3)(2n + 1)

> b, is dominant for large n

> 1), 1s smooth, and «* decay

superalgebraically (once n > c)
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Tri-diagonal Matrix

(bo as 0 ... \(ag%\ (agl

cc by as 0 ... s’ s’
0O ¢4 by ag ... |- | af = ym-| o4
0O ¢ bs ... g ag

\ f RN \

> Symmetric, diagonally dominant for large n
> Xm are eigenvalues
> Standard QR scheme for y,,

> We used Wilkinson’s subroutine published in
1964

> Bouwkamp did not have it

> Legendre coefficients o' are coordinates of

eligenvectors
> Coefficients af)*, a5, ", ... and
al*,as', ag’, ... can be computed separately

with, for example, Inverse Power Method
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Numerical Evaluation of ()

Generate the leading n rows and columns of

A:

2 1 1
n> = + (—2 log g> log(c) 4+ 10 - log(c)

T T
(Fuchs 1964)

Obtain eigenvalues and eigenvectors for the
symmetric tri-diagonal matrices using

standard numerical subroutines
Evaluate v, using its Legendre expansion

Essentially Bouwkamp algorithm in modern

language, straightforward and robust

Cost: O(c?) operations for computing the
coefficients (O(cn) operations for computing
the coeflicients for the first n Prolate

functions, n is proportional to ¢)

O(c) operations per subsequent evaluation
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Quadrature and Interpolation for
Band-Limited Functions

> Deal with band-limited functions on R!

= [ o) et at

—1

> Sums of the form

N
> dm s, (z)
m=0

- Similar to polynomials : number of roots

n [—1, 1], division theorem, etc

- Roots of 9¢ (x) are quadrature nodes (!)

> Remarkably similar to Gaussian quadratures
of polynomials, positive weights, symmetry,

efficiency

> Accuracy is roughly Ay
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Construction of Quadratures

> Division Theorem:
f2(x) = by () ¢° () + r°(x)

> Choosing nodes z; as roots of ¥¢(x), we have

1 1
/ f2(x) de = C -\, —I—/ r(x) dz
~1

—1

and
Zwi f2(z) =0+ sz r°(x;)
i=0 i=0

> Weights w;: solve the linear system

1

S wi(e) = (z) da
1=1

—1
1

S wi () f(x) do
=1

—1

Z w; Py, 1 () n1(z) dx
i=1
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Interpolation Algorithm

Given functions of band-limit 2¢, and given the
expected precision €

> Find n, such that the norm of eigenvalue
Ar < €

> Compute nodes x; as roots of ¥¢;

> Construct weights w; by solving the linear
system

Z Wy ¢8($i)
i=1

[ i) as

n 1
> wvi(e) = / i) da

n 1
> vt / Vi) do
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Accuracy vs. the Number of Nodes

> Unlike the case of polynomials, accuracy is
limited: the roots of ¥¢ provide an accuracy
of roughly A, .

> A\, < € for all (approximately)

2c
n > —
T

> For large c, n is almost independent of ¢
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Quadrature performance for varying band

limits, for ¢ = 107

C n  nodes/\ Error Ngguss

10.0 9 2.827 0.51E-07 13
50.0 24 1.508 0.83E-07 37
90.0 38 1.326 0.40E-07 59
200.0 74 1.162 0.86E-07 118
600.0 203 1.063 0.11E-06 326
800.0 267 1.049 0.13E-06 428
1000.0 331 1.054 0.14E-06 530
1800.0 587 1.025 0.80E-07 937
2400.0 778 1.018 0.15E-06 1240
4000.0 1288 1.012 0.17E-06 2047
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Prolate vs. Gaussian

Tested for sin(a - ) where a € [—10, 10],
r € [—1,1]. Quadratures were constructed with
the same number of nodes, and tested in

double-precision arithmetics.

n | Gaussian Error | Prolate Error
5! 2.9d-15 2.2d-15
9 2.4d-15 3.6d-15
16 4.7d-15 1.8d-15
36 3.9d-14 1.8d-15
101 6.1d-13 5.2d-15
350 3.0d-12 1.1d-14
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Interpolation performance for varying band

limits, for e = 1077, for '€~

c n  nodes/A Error Ncpheb

5.0 13 8.168 0.12E-06 17
10.0 18 5.655 0.13E-06 24
20.0 26 4.084 0.28E-06 37
30.0 33 3.456 0.73E-06 49
40.0 41 3.220 0.27E-06 61
45.0 44 3.072 0.60E-06 67
50.0 48 3.016 0.33E-06 73
100.0 82 2.576  0.46E-06 128
200.0 147 2.309 0.15E-05 235
300.0 212 2.220 0.17E-05 340
400.0 277 2.176  0.14E-05 443
500.0 341 2.143 0.22E-05 547
1000.0 662 2.080 0.24E-05 1058
1500.0 982 2.057 0.25E-05 1566
2000.0 1301 2.044 0.35E-05 2072
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Antenna Design, Prolate Spheroidal
Functions

Far-field radiation pattern of antennas of line

sources

1
F(sin 9) _ / a(u) ) ei.k;.u.sinO du
~1

where 6 is the angle from the normal of the
line segment

Radiation pattern synthesis: given F, find o!

Optimal approximation in least square sense
is linear combination of first N Prolate

functions

Patterns via discrete arrays of elements

1
F(sin@) _ / O'(’LL) ) ei.k.u.sine du

—1
n
-~ E :wj ) ei-k-uj-sinO
j=1

Looks like a quadrature formula: integrating

eiksinb-u with weight o
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> Use our quadrature machinery!
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Example 1: Sector Pattern with 20-wavelength
array (k=62.8)

sin(k -t
o(t) = L),
1 .
k.t . .
F(Sln 9) :/ Szn(t ) . 67,-]{;-'[:-811’19 dt
—1
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Figure 5a: Configuration generating the pattern in Figure 5
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Figure 5: The optimal approximation to the sector pattern with k=62.8
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Figure 5b: k=62.8, 19 equispaced nodes
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Figure 5c: k=62.8, 24 equispaced nodes
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Figure 5d: k=62.8, 29 equispaced nodes
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Figure 5e: k=62.8, 31 equispaced nodes
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Figure 5f: k=62.8, 34 equispaced nodes
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Figure bg: k=62.8, 21 optimal nodes
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Figure 5h: k=62.8, 17 optimal nodes
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Figure bi: Configuration generating the pattern in Figure 5h
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Figure 5j: The values of the 17 sources located at the nodes depicted in Figure 5i
and generating the pattern depicted in Figure 5h
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Example 2: Cosecant pattern with 35-wavelength
antenna array (k=110)

In this example, we set

for all € [a, b], and

for all z € ([—1,1] \ [a,8]);
a = sin(15°),

b= sin(75°)
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Figure 8a: Cosecant pattern with k=110; n=>53
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Figure 8b: Cosecant pattern with k=110; n=47. Note: 71 equispaced nodes required

to obtain this accuracy

34



>

>

>

>

>

Observations

Comparison with equispaced elements
Improvement of 30% - 50%

Improvement greater when the pattern is

symmetric
Gain squared for rectangular arrays

In most cases, o is not positive
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Conclusions

Numerical Evaluation of Prolate Spheroidal
Wave Functions is straightforward in the

current scientific computation environment

Quadrature and Interpolation formulae
parallel Gaussian quadratures and
corresponding interpolation schemes

Natural tools for the analysis and numerical
computation of band-limited functions

Overcome certain limitations of traditional
methods in Fourier analysis

Future Work

Analysis, Numerical algorithms for
approximation, extrapolation with

band-limited functions

Higher dimensions, disks, rectangles,
triangles, spheres

Applications of PSWFs in inverse scattering,
signal processing, etc.
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